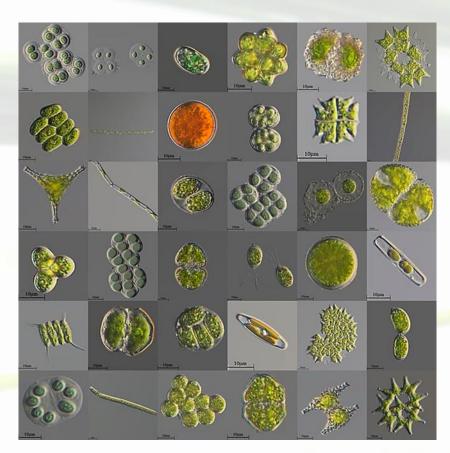

MICROALGAE – A NOVEL SOURCE OF PROTEINS

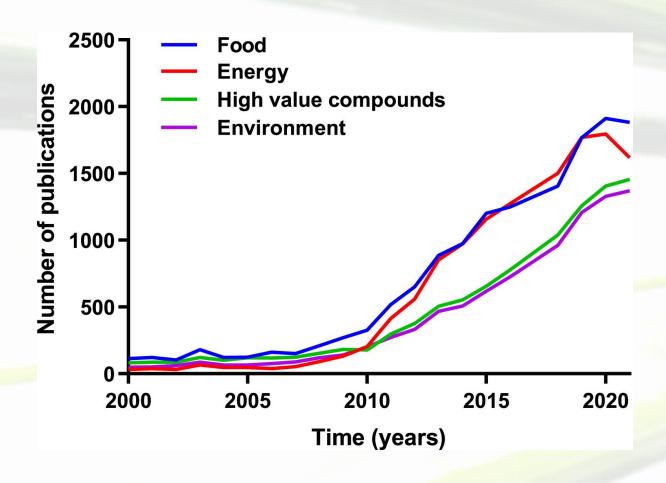
Nikola Medic, Specialist at Biomass Technology, Bioresources


FOOD SECURITY AND PRODUCTION

- increase in global population requires higher food production
- greenhouse gas emissions, the use of pesticides and herbicides, water consumption and land use
- the agricultural sector will require 'major transformations' to reach full potential



MICROALGAE


Diversity of microalgae (photo credit: Alexander Klepnev)

Application of the different products produced by microalgae (Safi et al., 2014 Icons by Freepik from flaticon.com)

MICROALGAE AND FOOD PRODUCTION

Number of publications classified by different microalgae applications (Chen et al., 2022).

MICROALGAL VALUE CHAIN

STRAIN SELECTION

CULTIVATION

UPSTREAM PROCESS

DEWATERING

CELL DISRUPTION

PROTEIN EXTRACTION

PRODUCT

PRODUCT

HARVESTING AND

MICROALGAE AND FOOD PRODUCTION

most promising source for new food products

Land use (m²/kg protein):

- Microalgae 1.7–5.4
- Eggs 26–135
- Beef 76–166
- Pork 40–76

Free off:

- herbicides
- antibiotics
- hormones
- pesticides

Rich in:

- protein,
- polyunsaturated fatty acids
- pigments
- vitamins

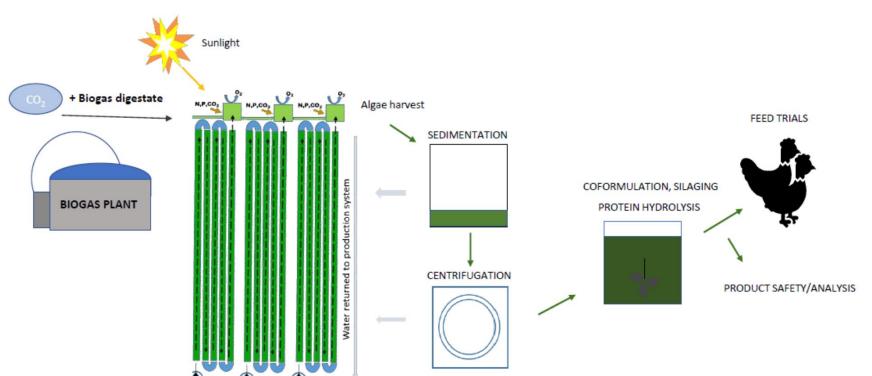
MICROALGAE AS A SOURCE PROTEIN

- promising way to close the predicted 'protein gap'
- protein content → species, strain, cultivation conditions
- microalgal biomass protein content 30 80 %
- amino acid profile of several microalgal species matches the reference profile of a well-balanced protein (WHO/FAO)

MICROALGAE	MASS PERCENT (%)	OTHER PROTEIN PRODUCT	MASS PERCENT (%)		
Chlorella vulgaris	51 – 58	dried skimmed milk	36		
Galdieria sulphuraria	62	soy flour	37		
Tetraselmis chui	31 – 46	chicken	24		
Nannochloropsis oceanica	35 – 44	fish	24		
Dunaliella salina	50 – 80	peanuts	26		

MICROALGAE AS A SOURCE PROTEIN

- direct use of microalgal biomass as single-cell protein (SCP) is limited by digestibility
- rigid cellulosic cell wall
- *Dunaliella* → lack a cell wall → advantageous as a protein feedstock
- ongoing studies in digestibility and biomass pre-treatment
- chlorophyll content green pigment


MICROALGAE PRODUCTION

- production of microalgae as SCP requires controlled cultivation
- waste streams of high quality (food and feed producing and processing industry)
- rely on inorganic NP fertilizers → in photobioreactors 100 % efficiency
- mostly used production systems are closed tubular photobioreactors
- mixotrophic cultivation

REMAPP PROJECT

- 1 ha algae production system will yield about 39 ton algae biomass (dm) and 17 ton protein per year of 10 month of production.
- This will require a supply of in the range of 60 ton CO2 and 545 m³ biogas digestate.
- Based on the estimated size of the Danish biogas industry in 2020 it is possible to supply a production of 140.570 ton algae protein per year.

MICROALGAE ON THE MARKET

- European Food market strict set of rules must be followed - food safety
- submission and approval as Novel food is a time consuming and expensive process
- big barrier to the market
- limited number of microalgae strains and ingredients approved as novel food

	Species for novel food	Appl. date	Status	Final decision	
	Chlorella vulgaris		Consumed prior 1997	Approved 1997	
	Chlorella pyrenoidosa		Consumed prior 1997	Approved 1997	
	Chlorella luteoviris		Consumed prior 1997	Approved 1997	
	Arthrospira platensis		Consumed prior 1997	Approved 1997	
	Odontella aurita	2002		Approved 2002	
	Tetraselmis chui	2011		Approved 2014	
	Nannochloropsis gaditana	2011		Pending	
	Euglena gracilis	2018	Positive report of EFSA_March_2020		
	Additives/supplements				
	<i>Ulkenia</i> sp. oil	2004		Approved 2009	
	Dunaliella salina oil (additive and supplement – E 160a (iv) or food orange5)	1977		Approved 1997	
	Astaxanthin-Rich				
	Oleoresin from <i>Haematococcus</i> pluvialis	2014	Positive report of EFSA_Dez_2019	Approved 2019	
	EPA-rich oil derived from				
	the microalgae <i>Phaeodactylu</i> <i>m tricornutum</i>	2016	Negative report of EFSA_June_2019		
	Euglena gracilis food supplement		Positive report of EFSA_March_2020		
	Phycocyanin from Arthrospira platensis (food colorant – additive)			Approved 2013	

CHLORELLA ICE CREAM

- made with Chlorella protein concentrate
- more B12 and iron than most dairy and plant-based alternatives
- Chlorella vulgaris European Food Safety Authority (EFSA) approved as food ingredients
- white cheese

Sophie's BioNutrients Develops Chlorella Ice Cream with More Iron and B12 Than Cow's Milk

November 10, 2022

©Sophie's BioNutrients

CONCLUSION AND FUTURE DIRECTION

The advantages of growing microalgae:

- minimal land use
- high growth rates
- high content of protein

Cost reduction of microalgae cultivation:

- large-scale application is currently limited by costs
- materials, equipment, power are substantial
- reduce the cost by increasing the photosynthetic efficiency
- strain selection (strain development)

QUESTIONS?

MICROALGAE	MASS PERCENT (%)	OTHER PROTEIN PRODUCT	MASS PERCENT (%)
Chlorella vulgaris	51 – 58	dried skimmed milk	36
Galdieria sulphuraria	62	soy flour	37
Tetraselmis chui	31 – 46	chicken	24
Nannochloropsis oceanica	35 – 44	fish	24
Dunaliella salina	50 – 80	peanuts	26

Species for novel food	Appl. date	Status	Final decision
Chlorella vulgaris		Consumed prior 1997	Approved 1997
Chlorella pyrenoidosa		Consumed prior 1997	Approved 1997
Chlorella luteoviris		Consumed prior 1997	Approved 1997
Arthrospira platensis		Consumed prior 1997	Approved 1997
Odontella aurita	2002		Approved 2002
Tetraselmis chui	2011		Approved 2014
Nannochloropsis gaditana	2011		Pending
Euglena gracilis	2018	Positive report of EFSA_March_2020	
Additives/supplements			
<i>Ulkenia</i> sp. oil	2004		Approved 2009
Dunaliella salina oil (additive and supplement – E 160a (iv) or food orange5)	1977		Approved 1997
Astaxanthin-Rich Oleoresin from <i>Haematococcus</i> <i>pluviali</i> s	2014	Positive report of EFSA_Dez_2019	Approved 2019
EPA-rich oil derived from			
the microalgae <i>Phaeodactylu</i>	2016	Negative report of EFSA_June_2019	
m tricornutum			
Euglena gracilis food supplement		Positive report of EFSA_March_2020	
Phycocyanin from <i>Arthrospira</i> <i>platensis</i> (food colorant – additive)			Approved 2013

